
1 . INTRODUCTION

HELICONS are circularly polarized electro-
magnetic waves, which can propagate almost

without attenuation inside a solid of high conduc-
tivity, permeated by a strong magnetic field. (The
condition for unattenuated propagation is that
co. r >> 1, where w, is the cyclotron frequency of the
current carriers and r is the relaxation time .) In
atmospheric physics these waves are well known as
radio whistlers .' The term "helicon," which is pres-
ently accepted to denote whistlers in the context of
solid state physics, is due to Aigrain,2 who first
proposed achievable experiments to detect them in
solids.' Observation of helicons was first announced
by Bowers, Legendy, and Rose,4 at frequencies of
order 10 cps. In recent years, helicons have been
observed and studied by a number of authors ; a
short survey of the literature on the subject is given
in another article by the present author .'

In this article we deal with the abstract boundary-
value problem presented by helicons under three
idealizing assumptions : (i) The sample carrying
helicons has negligible resistivity (but is not a super-
conductor, so that it does not exclude magnetic
flux) . (ii) The resistivity tensor is the same as would
be for uniform dc fields . (That is, nonlocal effects in
space and time are ignored.) (iii) The constitutive
equation is linearized. Assumptions (i) to (iii)
amount to assuming that (owing to the presence of
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the external magnetic field mentioned above) the
sample carrying helicons is characterized by a fixed,
antisymmetric resistivity tensor .

The arrangement we consider consists of a sample
(region M, in Fig . 1) and a closed reflecting surface
(surface S in Fig. 1) surrounding it, to stop any
energy from escaping; between the sample and the
reflecting surface there is a nonconducting region
(region M2 in Fig. 1) . The net charge on the sample,
and the charge density in the nonconducting region
are assumed to be zero . The sample is required to
have smooth boundaries ; a further requirement on
the boundaries is that they have no finite portion
parallel to the external magnetic field .
Under the above assumptions, the operator

-i(a/at), operating on electromagnetic fields, is
shown to be self-adjoint . In the proof it is not neces-
sary to assume that the dielectric constant, magnetic
susceptibility, and Hall coefficient are constants
throughout the regions of interest ; the external
magnetic field is not required to be uniform, nor
the displacement current negligible . Aside from the
restrictions already stated, there is no restriction on
the shape of the sample ; no use is made of any
assumptions to the effect that the sample is con-
nected or simply connected .

The purpose of making the seemingly arbitrary
restriction, that the boundary shall have no finite
portion tangential to the external magnetic field, is
to avoid a certain surface mode of energy absorp-
tion" ' e confined to surfaces tangential to the external
field . If the resistivity is assumed to be finite, and is
then allowed to tend to zero, the electric currents in
this mode increase without bound, and the Ohmic
loss does not tend to zero . Therefore, in samples with
such surfaces, any free oscillations are bound to be
attenuated, the operator -i(a/at) cannot have real
eigenvalues, and cannot be self-adjoint . (If anoma-
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In this paper it is shown that the class of electromagnetic problems for which the operator i(a/at)
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it will be found that two necessary conditions for self-adjointness of the operator i((9/at) are that
the sample carrying helicons must not have a finite portion parallel to B,, and it must be surrounded
by a reflecting surface that prevents energy from escaping .
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entirely surrounded by 8 (and not touching S) ;
M, the region composed of points inside and on S,,
and let M2 be the rest of M (see Fig . 1). Define the
vector it in the region M,, as an everywhere-bounded,
real, and well-behaved function of x, y, z, with the
further restriction that on the surface S,, the scalar
product it •n 5,44 0 (where n is a normal vector to S,),
except at most on some isolated points or lines . Let
E(x, y, z) and H(x, y, z) be (possibly complex) vector
functions, both defined throughout M such that
V x E and V x H are well defined ; let e(x, y, z) and
µ(x, y, z) be everywhere positive, real and bounded
functions, defined throughout M .

Form the six-component vectors
FIG . 1 . Notation for Sec . 2. Region M consists of regions

M, and M2 . M, is the sample carrying helicons .

lous skin effect is taken into consideration, the
surface loss is found to disappear for low enough
resistivity .')

Electromagnetic fields will be represented as
vectors [see (2.1)] in an abstract vector space with a
scalar product [see (2 .2)], as was done by Marcuwitz'
and Wilcox.' The present formulation slightly dif-
fers from theirs, in that, throughout Sec. 2 we deal
only with instantaneous electromagnetic fields, and
do not even implicitly assume any time dependence
[such as exp (iwt)] . The operator T = -i(a/at) is
rewritten, using two of Maxwell's equations, so
that it operates on the spatial coordinates only [see
Eq. (2.3)] . None of Maxwell's equations are explicitly
used in defining the allowable electromagnetic
fields; instead, it is required that the instantaneous
field be in the range of the operator Z' . The two
time-independent Maxwell's equations are then auto-
matically satisfied (because of the previously stated
assumptions of charge neutrality) . After the self-
adjointness of T is established (and therefore, the
existence of a complete set of eigenfunctions is
shown), time dependence is introduced by means of
the operator exp (itT) . The resulting time-dependent
functions automatically satisfy the two time-depend-
ent Maxwell's equations .

In Sec. 2 we give the mathematical definitions
and proofs, then make the necessary physical con-
nections in Sec. 3 .

2 . DEFINITIONS, THEOREM, AND PROOF

Definitions . Let S be a smooth, simply connected,
closed surface; M the region composed of all points
(x, y, z), inside and on S ; S, a smooth, closed surface

7 N . Marcuwitz, Electromagnetic Waves, Proceedings of
a Symposium Conducted by the Mathematics Research
Center, U. S . Army, at the University of Wisconsin, Madison,
on 10-12 April 1961 ; edited by R. E. Langer (The University
of Wisconsin Press, Madison, 1962), p . 109 .

8 C. H. Wilcox, Ref . 7, p . 65 .

Let the domain 3) of P be the set of F satisfying the
following boundary conditions (almost) everywhere
on S and S, respectively :

where a and (i are fixed, real, scalar functions of the
position on S ; both differentiable once, and at least
one of them differing from zero at each point on S .

Let L2 be the space of all vectors F for which
(F, F) < w . Let P be the closure of the range of P .
One can show at once that 61 is the set of vectors F
for which



where S, is any closed surface in the region M,,
enclosing M, .
Define the Hilbert space 5: as the set of all L2

vectors in 61 .

Lemma. Defined on the domain the operator T
is symmetric, i .e ., if F, and F 2 are both in D, then

(F,, TF2) = (TF„ F2) .

Proof . It is enough to show that for all F in D,

A = 2 [(F, TF) - (TF, F)] = Re (F, iTF) = 0 . (2.6)

For then the substitution F = F, + iF, in (2 .6) shows
that the real part of (F,, TF 2) (TF,, F2), vanishes,
and the substitution F = F1 + F2 shows that the
imaginary part of the same expression vanishes for
all F1 and F 2 in D.
To prove (2.6), integrate (2.2) by parts, thus

splitting up the integral into surface and volume
integrals : .

A= f A + f A +

	

B - ~
B+J

8
B

Af,

where

A = z Re (E* •j ) dV

B = -15 Re (E* xH) .dS

and S1" and 51 2) refer to integrals over S, as the
surface is approached from region M, and region M,
respectively . From the definition of j in (2 .3) one
can see at once that A identically vanishes in M,
as well as M,, thus, the first two integrals vanish .
(It is at this point that the antisymmetry of the
resistivity tensor was exploited .) Because of the
boundary condition on S,, (2 .4b), the two surface
integrals over S, cancel . Finally, from the boundary
condition over S, (2.4a), the last integral vanishes,
which completes the proof of the lemma .

Theorem . In the space 5 and on the domain D,
the operator P is self-adjoint .

Proof . In view of the lemma just proved, it is
enough to show that there exist a set of vectors
{F; } that are in 5 as well as D, and are such that if
for some F,

(F, TF;) = (TF, F;)

	

(2.7)

for all F; in the set, then F is necessarily in the do-
main D .

To show this, first form two arbitrary, complete
sets of everywhere bounded and differentiable vector
functions { a, } and {b ; }, defined only on the points
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of S,, everywhere tangential to S, and b ; identically
vanishing wherever j .n = 0. Completeness is meant
in the sense that, if the vector functions P(x, y, z)
and Q(x, y, z)•, defined throughout M are such that

where S, is any surface enclosing M, [Cf. Eq . (2.5)] .
Under the assumptions made earlier, the conditions
listed [including (2.10)] are not very restrictive, and
there is a wide choice of p ; and q; satisfying them .
[However, if for any i we had b ; x q ~ 0 at a point
where q.n = 0, there would exist no q; satisfying
the second of Eqs. (2.10) .]

Substitute for F ; in Eq . (2 .7) the vectors G, and K; ;
it follows at once from (2.8) and (2.9) that F in
Eq. (2.7) satisfies the boundary condition on S, .

To carry out the analogous proof for S, form a
complete set of vector functions c ;, defined on the
points of S, with properties similar to the properties
of a; previously defined on S,. Then form

L ;

	

Ch,)
such that e ; and h; identically vanish in and near
M,, they are bounded and well behaved everywhere,
and

e; xn = (3c ; ; h, xn = -ac;,

(The latter of these can only be true because, by
definition, q .n 5,4- 0 almost everywhere on S, .)
From a; and b ; construct the six-component vectors

such that p ; and q; identically vanish everywhere
on and near S, they are bounded and well-behaved
everywhere, and

p; xn = a; ;

	

q, xn = b; ;

on S,. (Note that, necessarily, G ; and K, are in the
domain D.) If p ; and q; satisfy the above require-
mentsG; and K; are in the sace 9 ifand onlif
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on S [where a and 0 are as defined in Eq . (2 .4a)] .
The vector L, thus defined is necessarily in the
domain D. It is easy to see that if L satisfy the above
requirements, they are in ~F if, and only if V • ee; = 0
and V -µh, = 0 everywhere . Again, the conditions
are not very restrictive, and there is a wide choice
of L satisfying them .

Substituting the vectors L, for F j in Eq . (2 .7), and
using the completeness of the set {c ; } through obser-
vations such as (2.8) and (2.9), it is easily shown that
F in Eq . (2.7) satisfies the boundary condition on S,
and the proof is complete .

3. RESULTS AND DISCUSSION

The vectors E and H in (2.1) are recognized as the
electric and magnetic field ; the scalar product of a
vector by itself, (F, F), is recognized as the energy in
the electromagnetic field F. As was indicated in the
Introduction, the operator T, defined in (2 .3) is

identified at once as -i(a/at) [j in (2.3) standing
for electric current density] . The definition of j in
the region M,, the region carrying helicons, is so
designed as to make E = j x 1), and therefore 11 •E = 0
and t)•(aE/at) = 0 at all times . Physically, 1) =
-RB,,, where R is the Hall coefficient and B° is the
steady, external magnetic field . The boundary condi-
tion (2.4a) forces Poynting's vector E x H to be
tangential to 8, hence the surface S reflects all
radiation coming onto it .

Denote the integrand in (2 .2) as F*F . Then

2 Re (F, iTF)

= 2 f F* at + at F = at
(F, F) .

	

(3 .1)

Comparing (3.1) with (2 .6), it is found that the
operator T is symmetric if and only if the system
conserves energy. We recall frown the proof of the
lemma that symmetry hinged upon three facts : (1)
in region M, the resistivity tensor is antisymmetric,
therefore the current and electric field areperpen=dicular,

and there is no Ohmic loss ; (2) by (2.4b),
the normal component of Poynting's vector is con-
tinuous across S, ; and (3) by (2.4a), the normal
component of Poynting's vector is zero over S . The
mathematical fact that a symmetric operator has
real eigenvalues is translated into the statement
that a system conserving energy cannot execute
damped or growing oscillations . The mathematical
fact that a symmetric operator has orthogonal
eigenvectors corresponds to the statement that if
the electromagnetic system conserves energy, its
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total energy is the sum of the energies in the indi-
vidual modes .

It follows from a remark made below (2 .10) that
if over a finite portion of the sample's surface
1) •n = 0, it is not possible to establish that F in
(2.7) satisfies the boundary condition (2 .4b) . In-
deed, physical considerations 5 show that in that
case, under the assumptions on which the present
formulation is built [namely, Assumptions (i) to (iii)
in the Introduction], the boundary of the sample
absorbs energy, and the proof cannot be completed .
(However, there is no difficulty in carrying out the
proof if the surfaces in question are appropriately
tilted or are made slightly "wavy" ; for the purposes
of the proof it does not matter how slight the dis-
tortion is . The artificially introduced roughness of
the surface may be thought of as "simulating"
anomalous skin effect, in that it eliminates surface
loss for low enough resistivities. For this simulation
to fit the physical situation best, the depth of
roughness must be-of the same order of magnitude as
the cyclotron radius .)

It is proved in functional analysis ° that if an
operator T is self-ad joint in a Hilbert space 5, then
the equation

TF = wF

	

(3.3)

possesses a set of eigenfunctions F which span all of ff .
The eigenfunctions are orthogonal and the eigen-
values w are real. A glance at the definition (2 .3)
of T shows that the two time-dependent Maxwell's
equations can be compressed into the form

-i aF(t)/at = T F(t) .

	

(3.4)
It follows that once the self-adjointness of T is
established, it is possible to construct a time-depen-
dent field F(t) from any instantaneous field F in 3:
as follows :

F(t) = e" f
F .

	

(3 .5)

The field (3 .5) thus constructed satisfies Maxwell's
equations (3 .4) . The sequence of expressions (3.4),
(3.3), (3.5) resembles the sequence of expressions
encountered in connection with Schrodinger's equa-
tion, with similar causal relations between the suc-
cessive forms .

The self-adjointness of P implies that Eq. (3 .5)

is meaningful, but it does not imply that the eigen-
functions of (3 .3) have finite energy, i .e., that the
eigenfrequencies w form a discrete set . It is hoped
that in the near future some author will show that P
has a unique inverse, and that the inverse is coin-

9 F. Riesz and B . Sz .-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955) .
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At the frequencies of interest in Reference 4 the reflecting
surface is not necessary, since an effect similar to total
internal reflection confines the helicon energy to the sample,
and essentially no energy reaches the reflecting shield . As
seen in the last paragraphs of the article ("comment on the
reflecting surface S"), at the frequencies in question the
fraction of energy reaching the shield in one cycle would be
of order 10-24 (meaning that it would take some 10 14 years
before most of the energy leaked out) . Nevertheless, the
rigorous proof fails without the shield, because to the
mathematics a small leakage of energy is no different from a

substantial one, and the energy leakage at the very high
eigenfrequencies (where leakage is substantial) is as
important as the leakage at the low eigenfrequencies (where it
is not). Accordingly the proof of this paper has been split into
a "mathematical proof' and a "physical proof' . The
"mathematical proof', in Section 2, shows that when there is
a shield there generally exists a complete set of oscillatory
modes; the "physical proof', in the last paragraphs of the
article, shows that in practice the shield is unnecessary, since
the energy leakage in its absence is negligible .

choose the origin of the coordinate system in such a
way that the cubical region inside which (0 P6 0 be
in the interior of the sample, and choose the edge of
the cube, 1, to be as large as possible . Substitute the

the resulting field (,g into (3 .6), and assume, for

simplicity, that e =- e o , • -- i, and t) is uniform .

Then,

T~)/(~,

	

14(27r/l)211• 1 .

Thus, the smallest eigenfrequency is necessarily
smaller than the latter quantity. Since we chose,0

such that c _- 0 outside the sample, the above esti-
mate only depends on the sample's size, and not on

the dimensions of the reflecting surface . The esti-

mate shows that, if the wavelength in free space
corresponding to the lowest mode is denoted by A o ,
then, to order of magnitude, A o/l - (l/2ir) (•o/e o)11 -1

In the physical situation of Ref. 4 (but not in the
situation of Ref . 2), (l,/2ir)(• o/e o) t i1 -1 108, i .e.,
independently of the size of the reflecting shield, the
lowest modes can be considered quasistatic (i .e ., of
essentially infinite vacuum wavelength) . To esti-
mate the rate at which energy would leave the
region M, in the absence of the reflecting surface,
consider the fields due to the currents and charges

on the sample alone; neglect all but the magnetic
dipole radiation, and let the shield be a sphere of

radius X 0 . The ratio of the energy crossing the shield
in one cycle to the energy inside the shield is then

found to be of order (l/Ao ) 3 _ 10 -24 .
For the higher modes the rate of radiation is

higher. However, it can be shown that if we formally
let the speed of light outside the sample tend to
infinity, the set of almost unattenuated modes can
be extended to an arbitrarily large part of the
spectrum .
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pletely continuous . This, together with the symmetry

property proved in the lemma, would imply every-

thing implied by self-adjointness, and would also
imply discreteness and square integrability .

We remark that the proofs of Sec . 2 do not make

use of the fact that the space iF is restricted to the

range of T . Both proofs can be repeated without
difficulty if the first, third, and fourth of Eqs . (2.5)

are dropped, as long as the second is retained and

the domain D is defined by (2.4) . Of course, the
results are then not physically meaningful . Also,

if P has a larger domain than range, it cannot pos-
sibly turn out to have an inverse, as was suggested .

in the previous paragraph .

Eqs . (2.5) can be compressed into the statement

that F must be in the closure of the range of P. The

physical interpretation of these equations is clear .

The first one is Maxwell's equation ; the third is also

Maxwell's equation, assuming that region M2 con-

tains no free charges; the fourth requires that there
be no net charge on the sample ; the second, com-

bined with (2.3b) means that the resistivity tensor

is antisymmetric .
It is a feature of the present formulation that all

field equations, more precisely, the four Maxwell's
equations and the constitutive equation, are intro-
duced into the problem merely through the definition

of a single operator .
In closing, we wish to comment on the reflecting

surface S. The operator T2 has positive eigenvalues,

therefore, if (0 is any vector in ~F, the quantity

('0,

	

(3.6)

is larger than the square of the smallest eigenfre-

quency. Thus, to make a crude estimate, let
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